373 research outputs found

    THE NERVE GROWTH FACTOR: PURIFICATION AS A 30,000-MOLECULAR-WEIGHT PROTEIN

    Full text link

    Large granular lymphoma in a Feline Immunodeficiency Virus-positive and Feline Leukemia Virus-negative cat

    Get PDF

    Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy.

    Get PDF
    Background: The occurrence of spontaneous tumors in pet animals has been estimated in a few European and North American veterinary cancer registries with dissimilar methodologies and variable reference populations. Objectives: The Animal Tumor Registry (ATR) of Genoa, Italy, was established in 1985 with the aim of estimating the occurrence of spontaneous tumors in dogs. Methods: Six thousand seven hundred and forty-three tumor biopsy specimens were received from local veterinarians in the Municipality of Genoa between 1985 and 2002. Three thousand and three hundred and three (48.9%) biopsy specimen samples were diagnosed as cancer and were coded according to the International Statistical Classification of Diseases (ICD-9). Results: Mammary cancer was the most frequently diagnosed cancer in female dogs, accounting for 70% of all cancer cases. Incidence of all cancers was 99.3 per 100,000 dog-years (95% CI: 93.6–105.1) in male dogs and 272.1 (95% CI: 260.7–283.6) in female dogs. The highest incidence rates were detected for mammary cancer (IR = 191.8, 95% CI: 182.2–201.4) and for non-Hodgkin's lymphoma (IR = 22.9, 95% CI: 19.7–26.5) in bitches and for non-Hodgkin's lymphoma (IR = 19.9, 95% CI: 17.4–22.7) and skin cancer (IR = 19.1, 95% CI: 16.6–21.8) in male dogs. All cancer IR increased with age ranging between 23.7 (95% CI: 18.4–30.1) and 763.2 (95% CI: 700.4–830.1) in bitches and between 16.5 (95% CI: 12.8–21.1) and 237.6 (95% CI: 209.1–269.0) in male dogs aged ≤3 years and >9–11 years. Conclusion: This study summarizes the work done by the ATR of Genoa, Italy, between 1985 and 2002. All cancer incidence was 3 times higher in female than in male dogs, a difference explained by the high rate of mammary cancer observed in bitches. Because a biopsy specimen was required to make a cancer diagnosis, cancer rates for internal organs cancers, such as respiratory and digestive tract cancers may have been underestimated in the study population

    Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia.

    Get PDF
    Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International Licence. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need to obtain permission from the licence holder to reproduce the material.The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    How underground systems can contribute to meet the challenges of energy transition

    Get PDF
    The paper provides an overview of the several scientific and technical issues and challenges to be addressed for underground storage of carbon dioxide, hydrogen and mixtures of hydrogen and natural gas. The experience gained on underground energy systems and materials is complemented by new competences to adequately respond to the new needs raised by transition from fossil fuels to renewables. The experimental characterization and modeling of geological formations (including geochemical and microbiological issues), fluids and fluid-flow behavior and mutual interactions of all the systems components at the thermodynamic conditions typical of underground systems as well as the assessment and monitoring of safety conditions of surface facilities and infrastructures require a deeply integrated teamwork and fit-for-purpose laboratories to support theoretical research. The group dealing with large-scale underground energy storage systems of Politecnico di Torino has joined forces with the researchers of the Center for Sustainable Future Technologies of the Italian Institute of Technology, also based in Torino, to meet these new challenges of the energy transition era, and evidence of the ongoing investigations is provided in this paper

    Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerable interest has been aroused in recent years by the well-known notion that biological systems are sensitive to visible light. With clinical applications of visible radiation in the far-red to near-infrared region of the spectrum in mind, we explored the effect of coherent red light irradiation with extremely low energy transfer on a neural cell line derived from rat pheochromocytoma. We focused on the effect of pulsed light laser irradiation vis-à-vis two distinct biological effects: neurite elongation under NGF stimulus on laminin-collagen substrate and cell viability during oxidative stress.</p> <p>Methods</p> <p>We used a 670 nm laser, with extremely low peak power output (3 mW/cm<sup>2</sup>) and at an extremely low dose (0.45 mJ/cm<sup>2</sup>). Neurite elongation was measured over three days in culture. The effect of coherent red light irradiation on cell reaction to oxidative stress was evaluated through live-recording of mitochondria membrane potential (MMP) using JC1 vital dye and laser-confocal microscopy, in the absence (photo bleaching) and in the presence (oxidative stress) of H<sub>2</sub>O<sub>2</sub>, and by means of the MTT cell viability assay.</p> <p>Results</p> <p>We found that laser irradiation stimulates NGF-induced neurite elongation on a laminin-collagen coated substrate and protects PC12 cells against oxidative stress.</p> <p>Conclusion</p> <p>These data suggest that red light radiation protects the viability of cell culture in case of oxidative stress, as indicated by MMP measurement and MTT assay. It also stimulates neurite outgrowth, and this effect could also have positive implications for axonal protection.</p

    Fusidic acid and clindamycin resistance in community-associated, methicillin-resistant Staphylococcus aureus infections in children of Central Greece

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In Greece, fusidic acid and clindamycin are commonly used for the empiric therapy of suspected staphylococcal infections.</p> <p>Methods</p> <p>The medical records of children examined at the outpatient clinics or admitted to the pediatric wards of the University General Hospital of Larissa, Central Greece, with community-associated staphylococcal infections from January 2003 to December 2009 were reviewed.</p> <p>Results</p> <p>Of 309 children (0-14 years old), 21 (6.8%) had invasive infections and 288 (93.2%) skin and soft tissue infections (SSTIs). Thirty-five patients were ≤30 days of age. The proportion of staphylococcal infections caused by a community-associated methicillin-resistant <it>Staphylococcus aureus </it>(CA-MRSA) isolate increased from 51.5% (69 of 134) in 2003-2006 to 63.4% (111 of 175) in 2007-2009 (<it>P </it>= 0.037). Among the CA-MRSA isolates, 88.9% were resistant to fusidic acid, 77.6% to tetracycline, and 21.1% to clindamycin. Clindamycin resistance increased from 0% (2003) to 31.2% (2009) among the CA-MRSA isolates (<it>P </it>= 0.011). Over the 7-year period, an increase in multidrug-resistant CA-MRSA isolates was observed (<it>P </it>= 0.004). One hundred and thirty-one (93.6%) of the 140 tested MRSA isolates were Panton-Valentine leukocidin-positive. Multilocus sequence typing of 72 CA-MRSA isolates revealed that they belonged to ST80 (n = 61), ST30 (n = 6), ST377 (n = 3), ST22 (n = 1), and ST152 (n = 1). Resistance to fusidic acid was observed in ST80 (58/61), ST30 (1/6), and ST22 (1/1) isolates.</p> <p>Conclusion</p> <p>In areas with high rate of infections caused by multidrug-resistant CA-MRSA isolates, predominantly belonging to the European ST80 clone, fusidic acid and clindamycin should be used cautiously as empiric therapy in patients with suspected severe staphylococcal infections.</p
    • …
    corecore